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I. Phys. A: Math. Gen. 19 (1986) 1823-1831. Printed in Great Britain 

Exact eigenfunctions for a quantised map 

Bruno Eckhardt 
Fachbereich Physik, Universitat Bremen, 2800 Bremen 33, West Germany 

Received 5 August 1985 

Abstract. Exact eigenfunctions for quantised linear maps on a torus are constructed. A 
connection with the number of periodic orbits of the classical map is established. It is 
shown that in the semiclassical limit the eigenfunctions become more and more random, 
i.e. their correlation function approaches a S function. 

1. Introduction 

There has been increasing effort recently in identifying the quantum analogue of chaotic 
behaviour in dynamical systems (see e.g. Zaslavsky 1981, Chirikov et a1 1981, Berry 
1983). Just as in the classical case, maps have proven to be very interesting objects of 
study (Casati et a1 1979, Berry et a1 1979, Chirikov et a1 1981, Hannay and Berry 1980, 
Shepelyansky 1983, Dorizzi et a1 1984). An important result of these investigations is 
that quantum mechanics may impose limitations to irregular behaviour, e.g. to the 
effectiveness of diffusive spreading of expectational values (see also Shuryak 1976, 
Casati et a1 1984). As has been shown by Fishman et a1 (1982) and Grempel et a1 
(1984), this may be understood in terms of an associated I D  tight-binding model. The 
quasi-energy enters in the diagonal part of the tight-binding Hamiltonian and the 
kicking potential determines the off-diagonal part, in particular the range of the 
interaction. It is generally believed that for short-range interactions already quasi- 
periodicity in the diagonal elements is sufficient for localisation. This immediately 
explains the resonance structure seen in the kicked rotator (see the work on maps cited 
above and Izrailev and Shepelyanskii (1979)). Outside resonance, the quasi-eigenstates 
are localised, thus diffusion is slow, whereas at resonance they are extended and 
diffusion is fast. For long-range interactions, states may always be extended, so there 
should be no quantum threshold. 

Some of the simplest models of fully chaotic behaviour in the classical limit are 
linear maps of the torus onto itself, a famous example being the Arnold cat-map 
(Arnold and Avez 1969). In the theory outlined above, they belong to the class of 
models with long-range interaction (because of periodicities, the kicking potential is 
discontinuous, so its Fourier transform falls off like l / r ) .  However, because of the 
restriction onto a torus, they are only approximations to discontinuous linear maps 
on a cylinder, which is what one actually has in mind. The investigation into the 
quantum mechanics of these maps was begun by Hannay and Berry (1981) (henceforth 
referred to as HB) .  They treated in detail the quantisation procedure, the form of the 
spectrum and the Wigner function for eigenstates. Here, we would like to complete 
their study with a discussion of the eigenstates. In particular, we will solve the 
eigenvector problem for even eigenstates in closed form. This will allow us to address 
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questions on the semiclassical behaviour of eigenvectors and to discuss localisation 
properties. 

We begin in $ 2  with a brief summary of the relevant results of HB. In 9 3  we 
present the solution of the eigenvector problem for even states. Properties of eigenstates, 
and in particular their semiclassical limit, are studied in 5 4. A summary of results 
and final comments can be found in § 5. In the appendix we collect some formulae 
on Gauss sums. 

2. Quantisiog linear maps on a torus 

Consider a linear map T of the phase plane (q ,  p )  onto itself 

Liouville’s theorem requires T to be area-preserving, i.e. det T = ad - bc = 1. To obtain 
a torus, we divide the plane into rectangles and identify sides. By a rescaling of 
coordinates, we may take the side length to be equal to 1. The map T has to leave 
the corner positions invariant, so a, b, c, d E H .  

We now summarise the results of HB. 

( i)  Since the wavefunctions are periodic in q, their momentum representation is 
discrete. But the momentum functions have to be periodic, too, so any wavefunction 
is discrete in both coordinate and momentum representation, with N points per period. 
Taking 1 / N  as units of position and momentum we may label all components by 
integers. Planck’s constant h and N are connected via Nh = 1. 

(ii) It turns out that this restriction of the map onto a discrete grid requires T to 
be one of the ‘checkerboard’ forms 

T=(even O d d )  or odd even 
odd even (even odd).  

Examples are the families 

TH=( 4m ’ y  -1 2m ’ )  m E Z  

and 

(3) 

Note that the first map is elliptic for m = 0 and hyperbolic otherwise, whereas the 
second is always elliptic. 

(iii) Because of the discreteness, time evolution within one period is given by a 
unitary N x N matrix. Generally, the matrix elements are of the form 

U,, = (phase factor) xexp( i r /N)QF(k ,  I )  ( 5 )  
where Q F ( S  I )  denotes a quadratic form in k and I with integer coefficients and 
perhaps a prime factor of N as common divisor. For the two maps above, we have 
(for arbitrary N) 
for T H  

U,, = (i /  N)1’2 exp(ir /  N)(2mk2 + 2m12 - 2 k l )  ( 6 )  
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for TE 

Ukl=(i/N)1'2exp(i~/N)(2r5k2-2r512-2kl). ( 7 )  

(iv) An important property of the quantisation procedure is the following. Let 
U (  Tl), U (  T2) be the propagators for the maps TI and T2.  Then 

U(T1 * T2) = U(TAU(T2). (8) 

This implies that if T n ( N ) =  id mod N, i.e. if T n ( N )  acts like the identity on the torus, 
then U (  T ) n ( N ) =  U(id) = I, up to some unimportant phase factors. This implies that 
the eigenvalues of U ( T )  are distributed on the unit circle with spacings given by 
multiples of ( 2 7 r l n ) .  It can be shown that for elliptic maps, n ( N )  = 4  (for N a 4 )  
whereas for hyperbolic maps, n (  N )  is a highly erratic function of N. The following 
conjecture, borne out by numerical computations, will be useful below: for N an odd 
prime which does not divide the discriminant D = ( a  + d)'-  4 of T, n(  N )  divides N + 1 
or N-1. 

(v) Finally, we need the connection between periodic orbits of the classical map 
and degeneracies of eigenvalues. (Note that periodic orbits are called cycles in HB. 
We will reserve this term for a different, though related, object in quantum mechanics.) 
We begin with the observation that since the map is linear, the Wigner function will 
evolve in time just like a classical phase space density. Now, for eigenstates the Wigner 
function is invariant. This implies that it can be written as a sum over densities 
supported by classical periodic orbits and constant along them. Thus, eigenstates are 
determined by at most as many parameters as there are periodic orbits. 

Consider now the most general time-independent phase space density. Classically, 
it is completely determined by its values along periodic orbits and quantum mechani- 
cally, it corresponds to a density matrix not containing terms mixing states with different 
eigenvalues. The number of free parameters in both cases has to be the same, which 
gives the desired relationship: the number of periodic orbits of the classical map equals 
the sum over eigenvalue degeneracies squared. In particular, for hyperbolic maps and 
for N prime and not a divisor of the discriminant, this implies that all orbits have 
equal length n(  N )  (except for the fixed point at the origin). They act on N Z  - 1 = 
( N -  1)(N+ 1) points, so their total number is ( N 2 -  l ) / n ( N )  (again omitting the 
origin). 

3. Computation of eigenvectors 

For convenience, we adopt the convention that all indices j ,  k, 1,. . . , run from 0 to 
N - 1 ,  with N the period of the lattice. By periodicity all indices of unitary propagators 
may be taken modulo N. We then have the following symmetry in the propagators of 
( 6 )  and (7): 

Accordingly, we may say an eigenvector transforms odd (even) under this symmetry, 
depending on whether it changes sign or not. We will mainly be interested in the case 
N prime, so even states will have [ N / 2 ]  + 1 independent components and odd states 
[ N / 2 ] ,  with the zeroth component fixed at zero ( [ a ]  denotes the largest integer S a ) .  

To motivate our ansatz for the eigenvectors, recall that in the continuous case, 
integration of a Gaussian function results in another one with perhaps different 
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parameters. Similar results exist in number theory for some particular sums, also 
named after Gauss. The one we will need is 

N-l  

k = O  exp( %( ak2 + ck)) = fi( :) exp( ?( N - 1) )  exp( -%( a(2a\ N ) 2 ~ 2 ) )  (10) 

for a positive (otherwise substitute a + 2 N  - a) .  Here (2a \N)  denotes the unique 
integer inverse to 2a in the residue class modulo N, i.e. 2a(2a\N)  = 1 mod N. (z)  
denotes a Jacobi symbol which takes on values * l .  Further discussion may be found 
in the appendix. 

The following ansatz then proves to be sufficient to generate all even eigenvectors: 

(up to normalisation). The number of components L will be determined below. 

symmetry. Action of U on one of the components $kW results in 
Periodicity of $k requires a, to be even, which also implies that $ has the right 

- ( 2 m  + a,)(2m + u , \ , N ) ~ ] ~ ~  

The condition for rl, to be an eigenvector reads 

U l k $ k  = e'*$,. 
k 

Now, for our ansatz to be successful a; and y: of (12) have to be contained in ( l l ) ,  
which we can be assured of by taking the a, and 6, generated by the recursion relations 

a,+, - - 2m - (2m + a,)(2m + a,\N)' (14a) 

By ( 1 4 ~ )  any even a, is uniquely mapped onto an even a,,,, so there is some L s  N 
such that aL+l = a , .  We call a sequence a, . . . aL a cycle and L its length. 

Since our matrix U is unitary, the eigenvectors may be chosen real. For the ansatz 
( 1 1 )  this means that for all a,, 2 N  -a, (=-a, mod 2 N )  should also be part of the 
cycle. It was found numerically that, indeed, in some cases all the negative a, were 
part of the cycle (the so-called complete cycle). In the majority of cases, however, the 
negative a: formed a cycle of their own, with exactly the same length and the same 
condition on the eigenvalues (see below). We will return to this when we discuss their 
length. Thus, incomplete cycles come in pairs. 
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Knowing the cycles a,, we may exploit (14b) to obtain the eigenvalues. Summation 
over all p yields 

L ( A+- - -  y )  +.rr , ~ , ( 2 m ~ a p ) = 0 m o d 2 . r r .  

This shows that each cycle of length L yields exactly L eigenvectors. 
The length of the cycles was numerically found to be n(N), n/2 or 1. A cycle of 

length 1 occurs only if n (  N )  divides N - 1 and it then takes care of the eigenvalue 
with degeneracy one higher (the case of multiplicity one less always seems to be realised 
in the space of odd vectors). As for the long cycles, recall that they give eigenvectors 
for L eigenvalues, spaced at (27r/ L )  (or multiples thereof). But we also know that all 
eigenvalues have spacing ( 2 ~ / n (  N ) ) ,  so the length has to divide n (  N ) .  The observation 
that L is so large may be interpreted semiclassically as follows. The projection of the 
Wigner function onto coordinate space yields, by construction, the wavefunction. As 
noted before ( 0  2(v)), the Wigner function for eigenstates has as many parameters as 
there are periodic orbits, so the same should hold for the eigenfunctions. Our findings 
for the length of the cycles indicate that the periodic orbits group according to the 
multiplicities of eigenvalues but within each group all orbits contribute to the eigenfunc- 
tion. This is in agreement with figures 4 and 5 in HB where Wigner functions of 
eigenstates and periodic orbits for a hyperbolic map (equation (3) with m = 1) are 
compared. We have not been able to answer the question whether there is a one-to-one 
correspondence between classical periodic orbits and the coefficients a, and 6,. 

In table 1 we list data on the number of cycles and their length for various values 
of N and m. >What typical eigenvectors look like is shown in figure 1. 

Table 1. Periods and cycles for various values of m and N. Abbreviations: n =period, 
C = complete cycle, IC =pairs of incomplete cycles. Numbers in parentheses give the length 
of the cycle. 

N 

m 9001 9007 901 1 9013 

n = 9010 n =9012 1 n = 2250 n =9W8 
I X C  (1125) 1 x C  (4504) 1 X C  (4505) I x C  (4506) 
3 x IC (1125) IXIC(1)  lXIC(1)  
1 x IC (1 )  

2 n = 1125 n = 3002 n = 9010 n = 4507 
I x C  (1125) 1 x c  (1501) 1 XC (4505) I x C  (4507) 
3 x IC (1125) 2xIC(1501) 1 x IC (1) 
1 x IC (1) IXIC(1)  

3 n = 9002 n = 4504 n = 1502 n = 9014 
1 X C  (4501) I x C  (2252) 1XC (751) 1 X C  (4507) 

1 x IC (2252) 5 X IC (751) 
4 n = 4501 n = 1501 n = 9012 n = 3004 

1 X C  (4501) I x C  (1501) I x C  (4506) I x C  (1502) 
2xIC(1501) 2 x IC (1502) 
1 x IC (1) I x I C ( 1 )  

I x C  (1125) 1 XC (4504) I X C  (4505) 1 x c  (4506) 
3 x IC ( 1  125) IXIC(1)  IXIC(1)  
l x I C ( 1 )  

n = 9010 n = 9012 5 n = 1125 n = 9008 
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I bi 

Figure 1. Examples of chaotic eigenstates for N = 9011, m = 1. ( a )  Eigenstate belonging 
to the incomplete 1-cycle (muttiplicity two); ( b )  an eigenstate belonging to the complete 
4505-cycle (multiplicity one). 480 elements are shown. 

We have not been able to extend this ansatz to cover odd eigenvectors as well. 
Some reasons are indicated in the appendix. Closely related is the omission of the 
linear term in ( l l ) ,  also commented upon in the appendix. 

4. Properties of eigenvectors 

We now would like to discuss statistical properties of typical eigenfunctions. By typical, 
we mean eigenvectors belonging to eigenvalues of low multiplicity, preferably multi- 
plicities one or two. The reason is that in highly degenerate eigenspaces linear 
combinations of eigenvectors may be taken to create (almost) any form desired. An 
extreme example of this is provided by the elliptic map (4) and its propagator (7). 
Since the propagator also contains a quadratic form in the exponent, the procedure 
of 0 3 may be applied to produce eigenvectors of much the same appearance as figure 
1. Yet, we know that n ( N )  = 4, so each eigenvalue is highly degenerate and may be 
simplified considerably. Similar things happen for hyperbolic maps with n( N )  << N. 
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One of the striking features of the eigenvectors is their highly erratic appearance 
(see figure 1 ) .  One way to test this is by studying the correlation function 

The prototype of the correlation function to be expected is obtained for $k = 

C ( I )  = ~ N ~ ~ , ~ + ~ J J N  c o s ( ( r / ~ ) a ’ l ~ +  y )  (17) 

(again up to normalisation of 4k). 
This clearly shows that as N +CO the first term dominates by a factor of JN and 

the $k become more and more &correlated. Generally, +k will consist of L cosine 
terms and C ( I )  will have L2 terms, L of which contain S functions weighted with N, 
the remaining L2 - L being of the form f i  cos(( b7r/ N ) k 2  + y ) .  Because of (17)  we 
may consider the latter as a sum of L 2 -  L random variables ofinean 0 and variance 
O ( f i ) ,  so their total weight will be O( L f i ) ,  again a factor J N  smaller than that of 
the 6,, term. In conclusion we may say that typical eigenvectors for hyperbolic maps 
are almost random variables. 

It has been conjectured for some time that eigenstates of non-integrable systems 
are highly irregular functions with complicated nodal patterns, etc. Berry (1977) arrived 
at this conclusion by studying the (anti-)caustic structure of the Wigner function. 
Shapiro and Goelman (1984) introduced a path correlation function and found numeri- 
cally for the stadium billiard a transition from long-range oscillations in low-lying 
eigenstates to rapid decay in high-lying states. The eigenfunctions presented above 
are the first example where a quantitative discussion of correlation properties is 
possible and indeed the wavefunction is found to be a &correlated random variable. 
The distribution for its values approaches (as N + CO) 

(18) 

for eigenvectors obtained from cycles of length 1 and a Gaussian density for others 
(compare figures l ( a )  and ( b ) ) .  

cos(( 7T/N)ak2):  

P(x)  dx = T-’( 1 - x2)-”* dx 

5. Conclusions 

In the preceding sections we have constructed exact eigenfunctions of even symmetry 
for a family of linear maps of the torus onto itself. The form of the eigenvectors was 
found to be linked to the number of periodic cycles of the classical map. The eigenstates 
are extended, in agreement with expectations arising from the connection with tight- 
binding models. We studied the correlation function C( I )  of the eigenstates and found 
it to be dominated by C(0). As we approach the semiclassical limit N + CO, C ( l ) /  C ( 0 )  - 
O( l / f i ) ,  so the randomness in the eigenvectors increases. 

In the classical map the eigenvalues (Lyapunov exponents) are a measure of the 
degree of chaos, larger exponents corresponding to more random time evolution. The 
quantum version seems not to be susceptible to this: the data in table 1 show that the 
function n ( N ) ,  determining the eigenvalue degeneracies, depends rather irregularly 
on m also, and moreover has to repeat itself after at most N values (see (6)). The 
correlation function C(I) ,  though monotonic in N, is insensitive to changes in m, at 
least for the even eigenstates discussed. Thus it appears that in this system quantum 
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mechanics distinguishes only between elliptic and hyperbolic, showing non-generic 
behaviour (highly degenerate eigenvalue, simple eigenvectors) in one case and generic 
behaviour (equidistantly distributed eigenvalues of multiplicity 1,  random eigenvectors) 
in the other. This suggests that the right measures of quantum chaos, at least on the 
level of eigenvalues and eigenfunctions, still have to be discovered. 
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Appendix 

In this appendix we list various properties of Legendre and Jacobi symbols and of 
Gauss sums relevant to our analysis (see HB, Rademacher 1964, Schroeder 1984). 

The Legendre symbol (pa) is defined as 
if there exists an m such that m2 = a mod p 

if no such m exists 
for p prime. 

factors: 
The Jacobi symbol is the generalisation of this to arbitrary N = ni pi, p ,  the prime 

One then has the product laws 

and the Gauss reciprocity theorem 

These formulae allow an efficient computation of Jacobi symbols, although for repeated 
use a table may be more convenient. 

In their derivation of the propagator U, H B  need the averaged Gauss sum 

If p is the period, then obviously 

and we can use their results. By inspection of the exponent one finds that the period 
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is N for ( a + c )  even and 2N otherwise (assuming a and N are coprime), so the 
adaptation of (14) in HB reads 
period N :  
N-1 

k = O  c exp($(ak'+ck)) 

=fi(i) exp(-:(N-l)) e x p [ - % ( a \ ~ ( f ) ' ]  

= fi( i) exp(-$(N-l) exp( - g ( u \ N ) 2 ( i ) 2  

for a even, c even 
( A 8 u )  

for a odd, c even 

period 2 N :  
2N-1 

exp ($( ak2+ ck) 
k = O  

=Zfi(g e x p ( T )  exp [-$(a\N)2(:)*] for a odd, c even (A8b) 

= O  for a even, c odd. 

Note that in (A8a) we may convert one case into the other by adding N to both a 
and c. This ambiguity explains the restriction to a,, even in (11). Symmetry require- 
ments then restrict c to 0 (or N ) .  We suspect that the odd eigenvectors are hidden in 
(A8b). However, we would need a closed form solution for the incomplete sum over 
half a period, something we have not been able to derive. 
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